策略思维-第7章
按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
Greene)道歉,我们借用的是他的例子:假设在卡斯特罗执政之前的古巴,吸尘器市场由一家名为“快洁”的公司独占,一家名为“新洁”的新公司正在考虑要不要进军这个市场。假如‘新洁“决定进入,”快洁“将面临两个选择:一是接纳”新洁“,和平共处,满足于一个与以前相比降低了的市场份额,二是打一场价格战。①
假设”快洁“接纳”新洁“;后者就可以赚得10万美元利润,但是,假如”快洁“发动一场价格战,就将给”新洁“造成20万美元的损失。假如”新洁“决定留在市场外而不进入,那么它的利润当然为零。下面我们画出这棵博弈树(如图25
所示),标明每一种结果会带来什么样的利润。
① 在格林(Greene)写的《我们在哈瓦那的人》(Our Man in
Havana)一书中,为这两家公司当中一家工作的销售员决定打仗,只不过用的是毒药而不是价格。
接纳 新洁得10万美元快洁打价格战 新洁亏20万美元进入新洁不进入 新洁得0
美元图25“新洁”应该怎么办?这是决策分析员需要解决的问题,也是商学院里讲授的问题。他们会画出一幅非常相似的图,却称之为“决策树”。理由是,他们通常把“接纳”和“打价格战”两种选择方案的结果看做偶然现象。因此他们会标出两者的出现概率。比如,假如他们认为接纳与打价格战出现的机会一样大,那么两者的概率同为1/2。接着,他们可以计算出“新洁”进人市场会得到多少利润,方法是将盈利和损失分别乘以相应的概率再相加。他们得到1/2*1000001/2*20000050000由于这是一个亏损数字,商业分析员们就会根据这些概率下结论说“新洁”不应该进军古巴市场。
以上的估计数字是从哪里来的呢?博弈论提供了答案:它们来自“新洁”自己对“快洁”在各种情形下的利润情况的估计。要估计“快洁”会怎么做,“新洁”首先应该估计“快洁”在不同情形下会得到多少利润。然后通过向前展望、倒后推理,预计对方会怎么做。进一步分析这个例子:我们假设“快洁”作为一个垄断者,有能力赚取30万美元利润。与“新洁”分享市场则意味着自己的利润降为10万美元。另外,从“快洁”这边估计,发动一场价格战的代价是10万美元。现在我们可以在这棵树上添加这些结果(如图26
所示)。
接纳 新洁得10万美元快洁得10万美元快洁打价格战 新洁亏20万美元快洁亏10万美元进入新洁不进入
新洁得O美元快洁得30万美元图26我们利用这棵树包含的信息预计以后的全部招数。由于具体招数可以由这个博弈的结果确定,这棵树完全适合看做一棵博弈树,而不是一棵决策树。比如,要预计“快洁”对“新洁”进入的反应,我们知道,“快洁”接纳“新洁”的话仍会有10万美元利润,发动价格战则会损失10万美元:“新洁”应该预计到“快洁”会选择前者。向这个方向展望,同时倒后推理,“新洁”应该在盘算的时候先把打价格战这个分枝去掉。它应该进入这个市场,因为预计它可以赚到10万美元。
若是换了其他环境,最后的决策可能发生变化。比如,假设“新洁”下一步有可能继续进军“快洁”早已建立市场的其他岛屿,“快洁”大约会觉得有必要在这个新来者面前摆出一副不好对付的样子,宁可在古巴损失10万美元也要发动一场价格战。“新洁”应该看到,这意味着自己注定会损失20万美元,最后决定还是留在外面,不要硬闯的好。
“新洁”可以看出任何一个得失数字都会转化为相应的行动。不过,它自己可能并不知道“快洁”在这棵树的顶端会得到什么样的回报。这种利润的不确定性将会转化为行动的不确定性。比如,“新洁”可能认为,有33。3%的机会“快洁”会在一场价格战中损失10
万美元,有33。3%的机会双方会打个平手(利润为零),最后还有33。3%的机会“快洁”即便打价格战也能赚到12万美元。若遇到这种情况,“向前展望,倒后推理”会认为,有2/3
的概率“快洁”会选择接纳“新洁”——赚到10万美元总比损失10万美元或双方打个平手要好,只比不上赚到12万美元。因此,发动一场价格战的可能性是33。3%。要弄清究竟会发生什么情况,惟一途径就是进军市场。不过,基于上述可能性,“新洁”有2/3
的概率赚到10万美元,1/3 的概率损失20万美元,因此,它的预计利润实际为零,根本没有理由进军市场。
在这个例子里,“新洁”对于“快洁”的得失的不确定性直接转化为对“快洁”会有什么反应的概率估计。不过,我们必须注意应该在哪里加人这种不确定性。正确的地方是在树的末端。现在就来看看,假如我们在考虑的时候企图跳到前面去会犯什么错:平均而言,“快洁”可以在一场价格战当中赚到6667(即1/3*120000+1/3*01/3*100000
)。但这并不意味着“快洁”就一定想打价格战。愿意打价格战的可能性不是100%。而且这种不确定性并不表示我们就应该猜测“快洁”愿意打价格战的可能性是50%。对“新洁”而言,分析这个问题的正确思路是从这个博弈的终点着手,预计“快洁”每一步会怎么做。
5 .更加复杂的树
在现实生活里,你会遇到的博弈远比上述我们用来进行形象描述的例子复杂。不过,即便这些“小树苗”长成“大树”,同样的原理也依然管用。象棋(国际象棋)可能是最好的例子。虽然象棋的规则相对比较简单,却已经形成一种需要进行策略推理的博弈游戏。白棋先行,黑棋回应,双方依次相继移动。因此,象棋当中最“纯粹”的策略推理就包含着向前展望你自己这一步将会导致什么后果,就跟我们在前面看到的一样。其实例可能是这样:“假如我现在走兵,我的对手就会进马,威胁我的车。我在走兵之前必须用我的象护住那四个格子,不让对手的马得逞。”
象棋是一种相继出招的博弈游戏,我们可以用一棵树来表示。白方可以从20种开局方式中任选一种。'2'在图27
中,我们用这棵树的第一个决策点(或节点)表示白方拥有的第一个先行机会,标为W1。他可以选择的20种走法变成20个枝条,从这个节点发散出去。每一个枝条代表的行动方式就是这个枝条的标签:兵进K4
(PK4 或代数标记法里的e4)、兵进Q4
,等等。我们的目的只是描述普遍情况,因此,为了避免这幅图表变得枝节丛生,我们不会显示或标明所有枝条。每一个枝条都会引出下一个节点,代表黑方的第一次行动,标为B1。黑方同样可以从20种开局方式中任选一种,于是,同样会有20个枝条从每一个标明B1的节点发散出去。双方走完第一步,我们已经看到有400种可能性。从现在开始,枝条的数目就会取决于前面一步。举个例子:假如白方的第一步是PK4
,他的第二步就有许多选择,因为他的后以及王旁边的象现在都可以出动。然后你就会发现,建立这棵树所要运用的原理多么简单,而这棵树在实践中又会很快变得多么复杂。
我们可以选择这棵博弈树上每一个决策点(节点)的一个枝条,沿着这个枝条一路走下去。这表示这盘博弈继续下去的一种特定方式。象棋大师早在博弈初期(开局阶段)就盘算过许多这样的路径,考虑过这些路径会有什么结果。比如我们已经标出的路径,白方第一步是PK4
,黑方以PQB4 回敬,就是预兆一场恶战的西西里防御。①① 继续下去,就是第二步,NKB3,PQ3 ;第三步,RQ4,PxP
;第四步,NxP , NKB3;第五步,NQB3 , PQR3 ;第六步,BKN5 , PK3 ;第七步,PKB4,QN3
;第八步,QQ2,QxP 。这种走法称为毒兵变局(Poisoned pawn variation)
,听上去好像来自善于玩弄阴谋诡计的西班牙博尔吉亚家族(the Bias)的宫廷,或是华尔街。
在许多博弈里,每一条这样的路径都会在有限次的选择之后到达终点。在体育或棋类比赛中,这可能是在一方取胜或双方打平的时候。更常见的情况是,博弈的最终结果可能是以给参与者货币回报、非货币回报或惩罚的形式出现。比如,商业对手之间的一场商界博弈可能给一家公司带来非常可观的利润,却使另一家公司破产。而核军备竞赛的博弈则可能达成一项成功的条约或导致两败俱伤。
假如一个博弈无论选择哪一条路径,都会在有限次的行动之后到达终点,我们在理论上就可以完全解决这个博弈。这意味着能找出谁将取胜以及他将怎样取胜。这是通过沿着这棵树倒后推理得出的。一旦我们走通了整棵树,我们就会发现我们究竟能不能取胜,还有,假如可以取胜,我们应该使用怎样的策略。对于任何一个相继选择并且数目有限的博弈,总是存在某种最佳策略。当然,存在一个最佳策略并不等于说我们总是可以轻而易举地找到这个最佳策略。象棋就是一个很好的例子。临到比赛结束之际,象棋大师在刻画最优策略方面一直做得非常出色。一旦棋盘上只剩下三四个棋子,大师级选手就能预见博弈的结局,(通过倒后推理)确定一方有没有一个万无一失的取胜策略,或另一方是否能迫使双方打平。接着,他们可以通过预计最后阶段的各种不同局势,评估中盘阶段的策略。问题在于,从来没有人可以一直倒后走通整棵树,直到开局的第一步。
一些简单的博弈可以用这样的方法得到完全解决。比如,3 x3 的连城游戏总是可以变成平局。①
这也是只有小孩才玩这个游戏而大人不屑一顾的原因。即便是西洋跳棋,也存在这个问题。大家都相信,第二个参与者总有办法达成平局,虽然这一结论尚未得到证明。为了保持大家对这种游戏的兴趣,西洋跳棋比赛让参与者从中局开始行动,在中局大家还看不出什么取胜或打平的策略。等到象棋也有可能用这种方法完全解决的那一天,象棋的规则大概也得进行修改了。
①
你也许觉得连城游戏是一种简单的博弈,但你还是不要指望能画出这裸博弈树。请注意,没有一局能在第五次行动之前走完,因为直到这时其中一方才第一次有机会在棋盘上放下三颗棋子,而此时枝条的数目已经达到9x8x7x6x5
15120
。当然,即便如此,这个博弈还是可以轻易解决,因为大多数枝条从策略上看是一模一样的。举个例子:虽然第一步有9种可能的走法,但这个博弈的对称性使我们不难发现,实际上这里只有3种完全不同的走法,即角、边线或中间。正是这样的小诀窍使这棵博弈树变得易于处理。
而在目前阶段,象棋参与者都做了什么呢?他们做了我们大家将相继移动的策略运用到实践中去的时候都应该做的事情:将向前展望分析与价值判断结合在一起。他们会问:“这条路在四五步之后会使自己争得一个有利局面,抑或陷入一个不利局面?”他们假设现在比赛已经结束,由此判断每一个可能的结果的价值。然后,他们选择那个五步之后可以达到最大价值结果的策略,向前展望,倒后推理。倒后推理是相对容易的部分。难的是怎样确定中盘局面的价值。每一个子的价值都要计算在内,同时要在吃子与取势两方面的优势之间进行权衡取舍。保罗·霍夫曼(Paul
Hoffman)在他的《阿基米德的报复》(Archimedes' Revenge)一书中描述了汉斯·伯利纳(Hans
Berliner)的电脑象棋程序。伯利纳是以通讯方式进行的象棋比赛的世界冠军,研制了一台专门用于下象棋的电脑,可以在每一步棋限定的3分钟之内检查3000
万种备选方案。伯利纳还确定了一个很好的规则,用于评估中盘局面的价值。能林够击败这个电脑程序的人不超过300名。在十五子棋比赛中,伯利纳也开发了一个程序,该程序已经使世界冠军俯首称臣。
将倒后推理的清晰逻辑与基于实践经验确定的、评估中盘局面价值高低的最佳规则结合起来,是处理远比象棋复杂的博弈的一种有用方法。
6 .讨价还价
无论在商界还是在国际政坛,参与各方经常通过讨价还价或者谈判来决定总收益这个“蛋糕”应该怎样划分。我们将在第11章更详细地探讨这一现象。现在我们把它当做一个形象的例子,解释倒后推理这一方法怎样使我们得以预见相继行动的博弈的结果。
大多数人基于社会常识,预测一场谈判的结果就是妥协。这样做的好处是能够保证“公平”。我们可以证明,对于许多常见类型的谈判,一个50对50的妥协也是倒后推理的结果。
首先,我们必须认识讨价还价的两个普遍特